3.357 \(\int \frac{x \sqrt{d+e x^2}}{a+b x^2+c x^4} \, dx\)

Optimal. Leaf size=202 \[ \frac{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )} \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x^2}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b^2-4 a c}}-\frac{\sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )} \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x^2}}{\sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b^2-4 a c}} \]

[Out]

-((Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x^2])/Sqrt[2*c*d - (b - Sqrt[b^
2 - 4*a*c])*e]])/(Sqrt[2]*Sqrt[c]*Sqrt[b^2 - 4*a*c])) + (Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]*ArcTanh[(Sqrt
[2]*Sqrt[c]*Sqrt[d + e*x^2])/Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[2]*Sqrt[c]*Sqrt[b^2 - 4*a*c])

________________________________________________________________________________________

Rubi [A]  time = 0.362691, antiderivative size = 202, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {1247, 699, 1130, 208} \[ \frac{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )} \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x^2}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b^2-4 a c}}-\frac{\sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )} \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x^2}}{\sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]

Int[(x*Sqrt[d + e*x^2])/(a + b*x^2 + c*x^4),x]

[Out]

-((Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x^2])/Sqrt[2*c*d - (b - Sqrt[b^
2 - 4*a*c])*e]])/(Sqrt[2]*Sqrt[c]*Sqrt[b^2 - 4*a*c])) + (Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]*ArcTanh[(Sqrt
[2]*Sqrt[c]*Sqrt[d + e*x^2])/Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[2]*Sqrt[c]*Sqrt[b^2 - 4*a*c])

Rule 1247

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rule 699

Int[Sqrt[(d_.) + (e_.)*(x_)]/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[2*e, Subst[Int[x^2/(c*d^2
- b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^
2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0]

Rule 1130

Int[((d_.)*(x_))^(m_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(
d^2*(b/q + 1))/2, Int[(d*x)^(m - 2)/(b/2 + q/2 + c*x^2), x], x] - Dist[(d^2*(b/q - 1))/2, Int[(d*x)^(m - 2)/(b
/2 - q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && GeQ[m, 2]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x \sqrt{d+e x^2}}{a+b x^2+c x^4} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{\sqrt{d+e x}}{a+b x+c x^2} \, dx,x,x^2\right )\\ &=e \operatorname{Subst}\left (\int \frac{x^2}{c d^2-b d e+a e^2+(-2 c d+b e) x^2+c x^4} \, dx,x,\sqrt{d+e x^2}\right )\\ &=-\left (\frac{1}{2} \left (-e-\frac{2 c d-b e}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{1}{2} \sqrt{b^2-4 a c} e+\frac{1}{2} (-2 c d+b e)+c x^2} \, dx,x,\sqrt{d+e x^2}\right )\right )+\frac{1}{2} \left (e-\frac{2 c d-b e}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{1}{2} \sqrt{b^2-4 a c} e+\frac{1}{2} (-2 c d+b e)+c x^2} \, dx,x,\sqrt{d+e x^2}\right )\\ &=-\frac{\sqrt{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e} \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x^2}}{\sqrt{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b^2-4 a c}}+\frac{\sqrt{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e} \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x^2}}{\sqrt{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b^2-4 a c}}\\ \end{align*}

Mathematica [A]  time = 0.329696, size = 179, normalized size = 0.89 \[ \frac{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )} \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x^2}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )-\sqrt{e \sqrt{b^2-4 a c}-b e+2 c d} \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x^2}}{\sqrt{e \sqrt{b^2-4 a c}-b e+2 c d}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*Sqrt[d + e*x^2])/(a + b*x^2 + c*x^4),x]

[Out]

(-(Sqrt[2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e]*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x^2])/Sqrt[2*c*d - b*e + Sqrt[b
^2 - 4*a*c]*e]]) + Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x^2])/Sqrt[2*c*
d - (b + Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[2]*Sqrt[c]*Sqrt[b^2 - 4*a*c])

________________________________________________________________________________________

Maple [C]  time = 0.013, size = 177, normalized size = 0.9 \begin{align*}{\frac{e}{4}\sum _{{\it \_R}={\it RootOf} \left ( c{{\it \_Z}}^{8}+ \left ( 4\,be-4\,cd \right ){{\it \_Z}}^{6}+ \left ( 16\,a{e}^{2}-8\,deb+6\,c{d}^{2} \right ){{\it \_Z}}^{4}+ \left ( 4\,b{d}^{2}e-4\,c{d}^{3} \right ){{\it \_Z}}^{2}+c{d}^{4} \right ) }{\frac{{{\it \_R}}^{6}+{{\it \_R}}^{4}d-{{\it \_R}}^{2}{d}^{2}-{d}^{3}}{{{\it \_R}}^{7}c+3\,{{\it \_R}}^{5}be-3\,{{\it \_R}}^{5}cd+8\,{{\it \_R}}^{3}a{e}^{2}-4\,{{\it \_R}}^{3}bde+3\,{{\it \_R}}^{3}c{d}^{2}+{\it \_R}\,b{d}^{2}e-{\it \_R}\,c{d}^{3}}\ln \left ( \sqrt{e{x}^{2}+d}-\sqrt{e}x-{\it \_R} \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(e*x^2+d)^(1/2)/(c*x^4+b*x^2+a),x)

[Out]

1/4*e*sum((_R^6+_R^4*d-_R^2*d^2-d^3)/(_R^7*c+3*_R^5*b*e-3*_R^5*c*d+8*_R^3*a*e^2-4*_R^3*b*d*e+3*_R^3*c*d^2+_R*b
*d^2*e-_R*c*d^3)*ln((e*x^2+d)^(1/2)-e^(1/2)*x-_R),_R=RootOf(c*_Z^8+(4*b*e-4*c*d)*_Z^6+(16*a*e^2-8*b*d*e+6*c*d^
2)*_Z^4+(4*b*d^2*e-4*c*d^3)*_Z^2+c*d^4))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e x^{2} + d} x}{c x^{4} + b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)^(1/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x^2 + d)*x/(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 74.911, size = 2241, normalized size = 11.09 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)^(1/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

-1/4*sqrt(1/2)*sqrt((2*c*d - b*e + (b^2*c - 4*a*c^2)*sqrt(e^2/(b^2*c^2 - 4*a*c^3)))/(b^2*c - 4*a*c^2))*log((b*
e^2*x^2 + 2*b*d*e - 2*a*e^2 + 2*sqrt(1/2)*sqrt(e*x^2 + d)*((b^2 - 4*a*c)*e + (b^3*c - 4*a*b*c^2)*sqrt(e^2/(b^2
*c^2 - 4*a*c^3)))*sqrt((2*c*d - b*e + (b^2*c - 4*a*c^2)*sqrt(e^2/(b^2*c^2 - 4*a*c^3)))/(b^2*c - 4*a*c^2)) + ((
b^2*c - 4*a*c^2)*e*x^2 + 2*(b^2*c - 4*a*c^2)*d)*sqrt(e^2/(b^2*c^2 - 4*a*c^3)))/x^2) + 1/4*sqrt(1/2)*sqrt((2*c*
d - b*e + (b^2*c - 4*a*c^2)*sqrt(e^2/(b^2*c^2 - 4*a*c^3)))/(b^2*c - 4*a*c^2))*log((b*e^2*x^2 + 2*b*d*e - 2*a*e
^2 - 2*sqrt(1/2)*sqrt(e*x^2 + d)*((b^2 - 4*a*c)*e + (b^3*c - 4*a*b*c^2)*sqrt(e^2/(b^2*c^2 - 4*a*c^3)))*sqrt((2
*c*d - b*e + (b^2*c - 4*a*c^2)*sqrt(e^2/(b^2*c^2 - 4*a*c^3)))/(b^2*c - 4*a*c^2)) + ((b^2*c - 4*a*c^2)*e*x^2 +
2*(b^2*c - 4*a*c^2)*d)*sqrt(e^2/(b^2*c^2 - 4*a*c^3)))/x^2) - 1/4*sqrt(1/2)*sqrt((2*c*d - b*e - (b^2*c - 4*a*c^
2)*sqrt(e^2/(b^2*c^2 - 4*a*c^3)))/(b^2*c - 4*a*c^2))*log((b*e^2*x^2 + 2*b*d*e - 2*a*e^2 + 2*sqrt(1/2)*sqrt(e*x
^2 + d)*((b^2 - 4*a*c)*e - (b^3*c - 4*a*b*c^2)*sqrt(e^2/(b^2*c^2 - 4*a*c^3)))*sqrt((2*c*d - b*e - (b^2*c - 4*a
*c^2)*sqrt(e^2/(b^2*c^2 - 4*a*c^3)))/(b^2*c - 4*a*c^2)) - ((b^2*c - 4*a*c^2)*e*x^2 + 2*(b^2*c - 4*a*c^2)*d)*sq
rt(e^2/(b^2*c^2 - 4*a*c^3)))/x^2) + 1/4*sqrt(1/2)*sqrt((2*c*d - b*e - (b^2*c - 4*a*c^2)*sqrt(e^2/(b^2*c^2 - 4*
a*c^3)))/(b^2*c - 4*a*c^2))*log((b*e^2*x^2 + 2*b*d*e - 2*a*e^2 - 2*sqrt(1/2)*sqrt(e*x^2 + d)*((b^2 - 4*a*c)*e
- (b^3*c - 4*a*b*c^2)*sqrt(e^2/(b^2*c^2 - 4*a*c^3)))*sqrt((2*c*d - b*e - (b^2*c - 4*a*c^2)*sqrt(e^2/(b^2*c^2 -
 4*a*c^3)))/(b^2*c - 4*a*c^2)) - ((b^2*c - 4*a*c^2)*e*x^2 + 2*(b^2*c - 4*a*c^2)*d)*sqrt(e^2/(b^2*c^2 - 4*a*c^3
)))/x^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \sqrt{d + e x^{2}}}{a + b x^{2} + c x^{4}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x**2+d)**(1/2)/(c*x**4+b*x**2+a),x)

[Out]

Integral(x*sqrt(d + e*x**2)/(a + b*x**2 + c*x**4), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)^(1/2)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

Timed out